

Small human hepatocytes in der Behandlung von Alkoholkranken? Verstoffwechslung von Ethanol, Diazepam und Oxazepam in der Rotationszellkultur

Marion Pavlic¹, Kathrin Libiseller¹, Martin Hermann², Paul Hengster³, Raimund Margreiter³, Martin Wurm⁴

¹Institut für Gerichtliche Medizin, ²KMT Labor, ³Klin. Abt. f. Allgemeine und Transplantationschirurgie, ⁴BAL Projekt. Medizinische Universität Innsbruck

Hintergrund

Über 50% der Todesfälle an Leberzirrhose sind alkoholbedingt

Therapie: Alkoholreduktion/-abstinenz

Prophylaxe von Entzugssymptomen mit Benzodiazepinen: Diazepam, Oxazepam

Einzige Therapie eines akuten Leberversagens ist nach wie vor die Transplantation - Problem der Organverfügbarkeit

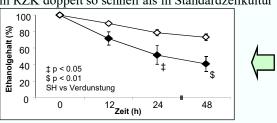
Notwendigkeit des "bridgings" von Patienten bis zur Transplantation

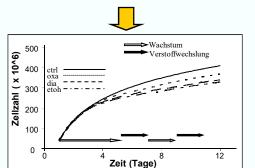
Bioartifizieller Leberersatz mit Zellkultursystemen

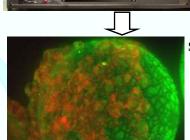
Erfordernis: ausreichende Anzahl vitaler humaner Zellen mit ausreichenden Stoffwechselleistungen

Rotationszellkultur (RZK)

 $85 \ ml \ Kammer, \ 300 \ ml \ Medium \\ konstante \ Versorgung \ mit \ O_2, \ N_2, \ CO_2 \\ Diffusionsaustausch (N\"{a}hrmedium, \ Stoffwechselprodukte) \\ \ddot{u}ber \ por\"{o}se \ Fasern$


Zellwachstum an microcarriern (cytodex3-beads)


A. Resultate Ethanol

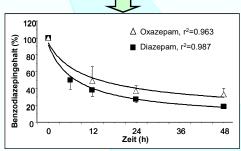

Reduktion um $48\pm11\%~(24h)$ bzw. $59\pm9\%~(48h)$

Vergl. Verdunstung 21 \pm 5% bzw. 27 \pm 5% entspricht 4 \pm 1.2 µg pro 10 6 Zellen pro h

in RZK doppelt so schnell als in Standardzellkultur

rot (TMRM): aktive Mitochondrien der SH

grün (WGA): beads


—— 25 µm

Small human hepatocytes (SH) hepatische Vorläuferzellen

Proliferation in vitro möglich zeigen Leberzellfunktionen

Untersuchung von

Ethanol-Abbau Diazepam-Metabolismus Oxazepam-Metabolismus Standardzellkulturparametern

B. Resultate Oxazepam

Reduktion zu 36±6% (24h) bzw. 33±7% (48h)

C. Resultate Diazepam

Reduktion zu 30±4% (24h) bzw. 19±5% (48h)

Zell-Wachstum

reduziert um 18% (EtOH), 15% (Diazepam), 6% (Oxazepam)

	Glucose	Urea	LDH	Albumin
Kontrolle	0.90 ± 0.18	0.05 ± 0.016	9 ± 0.9	0.018 ± 0.011
Ethanol	0.90 ± 0.12	0.04 ± 0.005	56 ± 8.0 ‡	0.005 ± 0.001
Diazepam	1.30 ± 0.21	0.04 ± 0.005	77 ± 13 §	0.006 ± 0.001
Oxazepam	0.94 ± 0.11	0.04 ± 0.006	40 ± 16	0.002 ± 0.001 *

Standardzellkulturparameter der SH in RZK. Glucoseverbrauch, Urea-Produktion und Albuminsekretion (mg/24h/10⁶ SH); LDH-Produktion (mU/24h/10⁶ SH); ‡ p < 0.05, p < 0.005, p = 0.08 vs Kontrolle.

Originalpublikation: M Pavlic, K Libiseller, M Hermann, P Hengster, R Margreiter, M Wurm (2007) Small human hepatocytes in rotary culture for treatment of alcohol addicts? A pilot study. Alcohol Clin Exp Res, Vol 31, No 5: 729-36. © Research Society on Alcoholism.

Fazit

SH verstoffwechseln Ethanol

Energiegewinnung

Belastung: Albuminproduktion sinkt, erhöhte Zelltodrate (6facher LDH-Anstieg), erniedrigtes Wachstum

SH verstoffwechseln Diazepam

Hinweis für CYP 450 - Funktionen

Belastung: erhöhte Zelltodrate (LDH-Anstieg um 900%), erniedrigtes Wachstum, erhöhter Glukoseverbrauch

SH verstoffwechseln Oxazepam

Hinweis für Konjugation (Glucuronsäure) geringe Belastung: nur Albuminproduktion sinkt, schwach erniedrigtes Wachstum, Vitalität konstant bei 95%