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Introduction
Amplification and sequencing of 

the entire mitochondrial (mt) genome 
becomes increasingly important in the 
fields of forensic DNA testing and 
phylogenetics, as control region 
sequencing and targeted coding region 
SNP typing are sometimes not enough 
for a clear haplogroup assignment.

Nowadays the amplification and 
sequencing of the mtDNA control region 
(CR) seems to be a routine exercise in 
some labs, while sequencing of the 
whole mt genome (~16.6kb) is more 
demanding, especially when the DNA 
quality of the samples of interest is low.

We earlier proposed a whole 
mitochondrial genome sequencing 
strategy [1], for which high quality DNA 
is required (Figure 1, left). The aim of 
this project was to evaluate an 
alternative approach for degraded or 
lower quality DNA samples that is based 
on the amplification of nine overlapping 
mitochondrial DNA fragments each 
~2kb in size (Figure 1, right).

Materials & methods
Samples of interest were selected 

on the basis of the results of entire 
control region analyses which were 
p e r f o r m e d  u n d e r  E M P O P  
recommendations [2], updated in [3]. 
Amplification of the nine mtDNA 
fragments (fragment A, B, C, D, E, F, G, 
H, and I; Figure 1, right) was performed 
in a final reaction volume of 25µL, using 
5U Advantage Polymerase (Clontech), 
2.5mg/mL BSA (St. Louis, Missouri), 
2.5mM each dNTP (AB), 10µM each 
primer and an adequat amount of 
mtDNA genome equivalents. Thermal 
cycling conditions comprised one initial 
step of 95°C for 4 min, followed by 35 
cycles at 95°C for 30 s, 57°C for 30 s, 
and 72°C for 4 min, and finally an 
extension phase at 72°C for 10 min. The 
nine amplification primer pairs are listed 
in Table 1. The applied 96 forward and 
reverse sequencing primers were 
adopted from [4] and complemented by 
in-house primers.

F i g u r e  2  i l l u s t r a t e s  t h e  
sequencing primer plate and respective 
primer names, according to their 5´ end. 
Cycle sequencing was performed with 
BigDye v1.1 (AB) and purification of 
sequencing products was done with 
Sephadex. Both procedures follow the 
r e c o m m e n d e d  p r o t o c o l .  T h e  
consequent alignment of the  96 primers 
is presented in Figure 3.

Results
Our alternative approach of whole 

genome amplification and sequencing 
by the use of nine overlapping 
ampl i f icat ion products and 96 
sequencing primers enabled the 
analyses of lower quality DNA, such as 
present in 5-10 years old DNA extracts.

In total, the entire mtDNA genome 
was amplified and sequenced in 39 
samples from the South American 
continent that failed to give useful 
results with the previously described 
strategy [1]. The consensus sequence 
of all samples was based on full double-
stranded sequence coverage and 
a l lowed fo r  the  unambiguous  
assignment of all base-calls including 
point and length heteroplasmy (Figure 
4).
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Discussion
The amplification and sequencing 

strategy of the full mitochondrial 
genome described herein is particularly 
relevant for lower quality DNA samples 
with the aim to enable reliable base-
call ing by redundant sequence 
analyses. 

The careful assortment of primers 
contributed to a full double-stranded 
sequence coverage of the whole mtDNA 
genome (in combination with previously 
described CR sequencing strategies). 
We recommend this whole mt genome 
sequencing strategy to be applied on 
more challenging samples, where other 
who le  m tGenome  sequenc ing  
strategies failed to give conclusive 
results.

Figure 1. Schematic outline and comparison of the two mtDNA genome 
sequencing strategies mentioned including the localisation of the 
corresponding overlapping amplification products in the mt genome

Table 1. Sequences  of the nine amplification 
primer pairs in the mt genome. Primer sequences taken from [5, 6, this 
study]

and nucleotide positions

Figure 3. Sequencher alignment of 96 sequence strands covering the 
coding region employing the alternative WGS strategy  

Figure 2. Sequencing primers applied in 96-well format. Primer names 
refer to the 5 prime end [4, this study]

Figure 4. Raw data of sequencing primer F5318 from a low quality DNA 
sample; upper lane: sequence resulting from one ~8.5kb fragment; lower 
lane: sequence generated by the alternative sequencing strategy
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Primer of 

fragment
Primer sequence 5´- 3´ Primer position (nts)

A forward GATCACAGGTCTATCACCCTA 1 - 21

A reverse TTGGACAACCAGCTATCACCA 2027 - 2007

B forward GCACACCCGTCTATGTAGCA 1941 - 1960

B reverse TTCGATGTTGAAGCCTGAGAC 3948 - 3928

C forward CCACACTAGCAGAGACCAAC 3869 - 3888

C reverse GGCTGAGTGAAGCATTGGACT 5883 - 5863

D forward GAAGCTGCTTCTTCGAATTTGC 5777 - 5798

D reverse GGGCGTGATCATGAAAGGTG 7667 - 7648

E forward CAAGTAGGTCTACAAGACGCT 7601 - 7621

E reverse CTGATGCGAGTAATACGGATG 9627 - 9607

F forward TACCACTCCAGCCTAGCCC 9510 - 9528

F reverse TCGTAGGCAGATGGAGCTTG 11593 -11574

G forward CGGCTATGGTATAATACGCCT 11476 - 11496

G reverse AGCGATGAGAGTAATAGATAGG 13581 - 13560

H forward CCTCACAGGTTTCTACTCCAA 13491 - 13511

H reverse GAGGTCTGGTGAGAATAGTGT 15493 - 15473

I forward GGCATTATCCTCCTGCTTGCAACTAT 15092 - 15117

I reverse TGATAGACCTGTGATCCATCGTGA 16561 - 16


	Seite1

