On the inter-instrument and the inter-laboratory transferability of a tandem mass spectral reference library: 2. Optimization and characterization of the search algorithm

On the inter-instrument and the inter-laboratory transferability of a tandem mass spectral reference library: 2. Optimization and characterization of the search algorithm


Oberacher,H.; Pavlic,M.; Libiseller,K.; Schubert,B.; Sulyok,M.; Schuhmacher,R.; Csaszar,E.; Kofeler,H.C.;

A sophisticated matching algorithm developed for highly efficient identity search within tandem mass spectral libraries is presented. For the optimization of the search procedure a collection of 410 tandem mass spectra corresponding to 22 compounds was used. The spectra were acquired in three different laboratories on four different instruments. The following types of tandem mass spectrometric instruments were used: quadrupole-quadrupole-time-of-flight (QqTOF), quadrupole-quadrupole-linear ion trap (QqLIT), quadrupole-quadrupole-quadrupole (QqQ), and linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer (LIT-FTICR). The obtained spectra were matched to an established MS/MS-spectral library that contained 3759 MS/MS-spectra corresponding to 402 different reference compounds. All 22 test compounds were part of the library. A dynamic intensity cut-off, the search for neutral losses, and optimization of the formula used to calculate the match probability were shown to significantly enhance the performance of the presented library search approach. With the aid of these features the average number of correct assignments was increased to 98%. For statistical evaluation of the match reliability the set of fragment ion spectra was extended with 300 spectra corresponding to 100 compounds not included in the reference library. Performance was checked with the aid of receiver operating characteristic (ROC) curves. Using the magnitude of the match probability as well as the precursor ion mass as benchmarks to rate the obtained top hit, overall correct classification of a compound being included or not included in the mass spectrometric library, was obtained in more than 95% of cases clearly indicating a high predictive accuracy of the established matching procedure

J Mass Spectrom 2009 44(4):494-502
PubMed: 19152368